terça-feira, 6 de março de 2012

Lucy in the Sky with (nano)diamonds

Vi a matéria no Canal Fala Química, no facebook.

Daí fui pesquisar o link original e compartilho a tradução agora com vocês:

Notícia publicada no dia 24 de Fevereiro de 2012

---------------------------------

Pesquisadores australianos desenvolveram um modelo para resolver a origem dos nanodiamantes meteóricos, um quebra-cabeças cosmológico antigo. Seu trabalho pode também ter um impacto sobre um processo importante no planeta Terra: sintetizar diamantes artificiais.

Até recentemente, investigar a vida do universo em seus estágio iniciais era possível apenas através de espectroscopia. Pela observação da radiações antigas provenientes do espaço, os astrônomos podem efetivamente olhar para trás na história. Isso mudou no final dos anos 1980 quando nanodiamantes (minúsculas partículas de diamente de menos de 2 nm de tamanho obtidas a partir de meteoritos) mostraram conter isótopos nãp usuais de gases nobres que indicavam suas origens fora do nosso sistema solar.

'Essas amostras foram realmente importantes porque foi a primeira vez que nós pudemos dizer "Isso realmente veio de fora do nosso sistema solar,"' disse Rhonda Stroud, que estuda nanodiamantes meteóricos no US Naval Research Laboratory em Washington.

Entretanto, desde a sua descoberta, os nanodiamentes têm confundido mais do que esclarecido, com a aparentemente conflitante evidência a respeito da sua idade e origem frustrar todas as tentativas de desenvolver um modelo realista para a formação dos nanodiamantes que se encaixe em todos os dados. Agora, Nigel Marks da Universidade Curtin em Perth, Australia, e seus colegas propuseram um novo modelo para a formação dos nanodiamantes, os quais eles acreditam oferecer a solução mais simples e óbvia. 

Formation of nanodiamonds

 

Na figura, à medida que as "cebolas" colidem com a superfície, elas se transformarm em diamantes.
© Phys. Rev Lett.

O modelo de Marks é baseado na colisão de "cebolas" de carbono - camadas concêntricas de moléculas de fulereno que podem ocorrer naturalmente no espaço. "Cebolas de carbono estão absolutamente em todos os lugares," diz Marks, "em qualquer lugar que exista vapor de carbono, ele se resfria espontaneamente para formar essas estruturas concêntricas de cebola. O telescópio Spitzer tem mostrado que o espaço está cheio de fulerenos e eu ficaria tremendamente surpreso se ele não estivesse cheio dessas cebolas também. De fato, cebolas são mais fáceis de formar." E à medida que elas se formam, as cebolas encapsulam outras espécies, fornecendo uma "explicação elegante para como os isótopos terminam capturados dentro dessas estruturas". Quando essas cebolas colidem umas com as outras, ou com outros materiais, na velocidade adequada, a força do impacto faz com que ocorra uma transição de fase para a forma diamante.

Mark tropeçou na sua descoberta enquanto conduzia simulações computacionais para investigar anomalias estruturais em uma cobertura fina de carbono. "Nós rodamos muitas, muitas simulações," disse Marks" e em boa parte dos casos nós observamos que se formou diamante. Nós descobrimos que esse grande enigma existia na astrofísica e quando nós procuramos as condições em nossas simulações, elas eram exatamente as encontradas no espaço." Marks sugere que as condições ordinárias poderiam permitir a formação de nanodiamantes antes e durante a formação do nosso sistema solar, resolvendo a confusão relativa à evidência de idade dos nanodiamantes.

Rhonda Stroud diz que o modelo de Marks é bastante convincente mas pode não ser a única explicação. "Eu suspeito que existirão múltiplas origens, múltiplas populações de nanodiamantes e uma vez que nós possamos medi-las individualmente, nós estaremos aptos a distinguir os diamantes de diferentes origens".

Stroud também nota que a identificação inequívoca da idade e origem de nanodiamantes específicos requerirá técnicas analíticas potentes que estão apenas começando a se tornar dispo níveis. 

"O processo de transformação das cebolas de carbono por choque é bastante realista," confirma Sasha Verchovsky da Open University, Reino Unido, que também trabalha nos cálculos do fenômeno dos nanodiamantes. "Será interessante fazer esse experimento para produzir nanodiamentes a partir de cebolas de carbono."

Para Marks, a verificação experimental desse modelo e suas implicações para a ciência dos materiais são o aspecto mais interessante do seu trabalho. "Nós queremos agora criar aparatos que contenham apenas cebolas de carbono e então controlas suas colisões com superfícies," diz ele. "O que será a peça fundamental de evidência ... nós estamos aptos a fazer coisas que nós normalmente não fazemos com carbono ... e se funcionar, nós teremos uma nova forma de produzir diamante."

Referências

N Marks, M Lattemann and D McKenzie, Phys. Rev. Lett., 2012, 108, DOI:10.1103/PhysRevLett.108.075503

Bônus: vídeo com uma animação da simulação computacional

Nenhum comentário: